CHEM1612 Problem Sheet 7 (Week 8)

1. Classify the solutions formed from the following salts as *acidic*, *basic* or *neutral*.

(a) KNO₃ (b) FeCl₃ (c) Ca(OH)₂ (b) $(NH_4)_2SO_4$ (e) NaN₃ (f) BaCl₂

- 2. The K_{sp} of Ca₃(PO₄)₂ = 1.3×10^{-32} M⁵.
 - (a) Calculate the solubility of $Ca_3(PO_4)_2$ in water in mol L⁻¹ and g L⁻¹.
 - (b) Calculate the molar solubility of $Ca_3(PO_4)_2$ in 0.20 M Na₃PO₄ solution.
- 3. Will a precipitate occur if a 0.01 M Ag⁺ solution is mixed with an equal volume of 0.01 M sulfuric acid? $K_{sp} (Ag_2SO_4) = 2 \times 10^{-5} M^3$
- 4. Give the oxidation number of the underlined element in the following.

(a) K <u>Mn</u> O ₄	(b) $\underline{S}O_4^{2-}$	(c) Na_2O_2	(d) M <u>gH</u> ₂
(e) $N\underline{H_4}^+$	(f) <u>Br</u> F ₃	(d) $[\underline{Ni}(NH_3)_6]^{2+}$	(e) $K_4[\underline{Fe}(CN)_6]$

- 5. K_{stab} of $[\text{Zn}(\text{NH}_3)_4]^{2^+}$ is $8 \times 10^8 \text{ M}^{-4}$. What is the molarity of $\text{Zn}^{2^+}(\text{aq})$ ions in the solution made by adding water to zinc nitrate (0.10 mol) and ammonia (3.0 mol) so that the final volume of solution is 1.5 L?
- 6. Human haemoglobin has a molecular weight of 6.45×10^4 , a concentration in blood of 15.0 g per 100 mL and contains 3.4 g of iron per kg.. It reacts with oxygen to form a complex that contains 4 molecules of oxygen per molecule of haemoglobin.
 - (a) Calculate the volume of oxygen per 100 mL of fully oxygenated blood at 311 K and 101.3 kPa.
 - (b) Calculate the number of iron atoms in each molecule of haemoglobin.
 - (c) Magnetic studies show that the haemoglobin molecule contains 4 unpaired electrons per iron atom. What is the oxidation state of the iron?